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ABSTRACT

Computer studies have been continued of three different

cylindrical antenna configurations that could be used as

adaptive arrays for deep space vehicles. Analysis of the ef-

fects of vehicle spin on gain modulation has been made. Some

effects of spin on spectral splitting are superficially dis-

cussed but have not yet been analyzed.

The effects of planetary reflections on a retrodirective

array system have been studied.

Some system aspects of a planetary mission employing

retrodirective arrays are considered. A start has also been

made on studying the use of an adaptive array to provide

navigational information such as angle of arrival of a signal.

iii



PRECEDING PAGE BLANK [':lOT FILMED.

CONTENTS

ABSTRACT .................................. iii

LIST OF ILLUStrATIONS . . . V ........................ vii

LIST OF TABLES ................................ ix

I INTRODUCTION ............................. 1

II PERFORMANCE DURING THE SECOND QUARTER ................. 3

A. Task I--Antenna Concepts ..................... 3

1. Basic Antenna Configurations of the Cylindrical-Lens Type. • • 3

2. Circular Array of Omnidirectional Elements .......... 20

3. Cylindrical Retrodirective Array of Discrete Unidirectional
Line Sources with Logical Element Switching .......... 37

B. Task II--Environmental Effects .................. , 45

1. General.. ........................... 45

2. Planetary Model ........................ 45

3, Received Signal Power ..................... 46

4. Spectral Broadening ...................... 47

C. Task III--Circuitry ...................... • • 48

1. Estimated Amplifications and Noise Bandwidths
for Retrodirective Elements on a Planetary Bus ........ 48

2. A Duplex Retrodirective Scheme for a Mars Bus ......... 55

3. Range and Range-Rate Tracking ................. 60

4. Maximum Likelihood Angle Estimation from a Uniformly Spaced
n-Element Linear Array .................... 63

III ANALYSIS ............................... 75

A. Antenna Configurations ...................... 75

1. General Discussion ...................... 75

2. Cylindrical-Geodesic-Lens Discrete-Line-Source Antenna .... 76

3. Circular Array of Omnidirectional Elements .......... 77

4. Switched-Element Retrodirective Array ............. 78

B. Environmental Effects ....................... 78

IV PROGRAM FOR NEXT QUARTER ....................... 81

APPENDIX A EXTENSION OF GODDARD SYSTEM TO EARTH/BUS/CAPSULE
CONFIGURATION ......................... 83

APPENDIX B CHANGE OF ORTHOGONAL BASES .................. 91

REFERENCES ................................. 97



pi_,ECEDiNG PAGE bLAi'41{ NOT FILMED.

ILLUSTRATIONS

Fig. 1

Fig. 2

Fig. 3

Fig. 4

Fig. 5

Fig. 6

Fig. 7

Fig. 8

Fig. 9

Fig. 10

Fig, 11

Fig. 12

Fig. 13

Fig, 14

Fig. 15

Fig, 16

Fig, 17

Fig. 18

Fig, 19

Fig. 20

Fig, 21

Fig. 22

Fig, A-1

Fig. A-2

Fig, A-3

Fig, A-4

A Cylindrical-Geodesic-Lens Multiple-Line-Source Antenna ......... 4

Geometry Associated with a Single-Geodesic-Lens Radiator and
a Single-Line-Source Radiator: ...................... 6

Basic Antenna Pattern Used as Reference .................. 13

Computed Gain in the Retrodirection as a Function of a
Rotation of the Antenna ......................... 15

Beams Shapes as a Function of the Retransmitted Frequency:
Reception and Transmission at the Same Frequency ............. 17

Decrease in Gain with Increase of /_t ................... 18

Effect on Azimuth of Changing Value of N ................. 19

Computed Patterns for Two Value of N Using a 10_ Diameter Antenna ..... 21

Onmiazimuth-Element Circular Array on the End of a Cylinder ........ 22

Definition of Ring-Array Parameters .................... 27

Computed Pattern of a 20_h Diameter, 30-Element Circular Array ...... 27

Computed Pattern of a 20-h Diameter, 60-Element Circular Array ...... 28

Computed Pattern of a 20-2_ Diameter, 90-Element Circular Array ...... 29

Spurious-Lobe Location as a Function of Element Spacing .......... 33

Cylindrical Array of Discrete Unidirectional Radiators .......... 38

Normalized ERP, P and G as a Function of _ ............... 43
tn

Earth/Bus Link with 1000 Active Converters (One per active element) .... 51

Earth/Bus Link with 50 Active Converters (One per active row) ....... 52

Earth/Bus Link with One active Converter ................. 53

Physical Layout of Retrodirective Array on Cylindrical Lens ........ 56

Conversion Scheme for a Duplex Retrodirective System ........... 58

Regions in the X2-X 3 Space and the a-Set that Carries Them into
Region I .................................. 73

Two-Transponder System .......................... 86

Spectra of Signals in Two-Transponder System ............ , . . 87

Evaluation of f0 and D O.......................... 89

Evaluation of fc and DC. . . . . .......... 90

vii



PRECEDING PAGE BLANK NOT F_LMED.

T MILES

Table I

Table II

Table III

Comparison of Array Gains ........................

Earth/Bus Link with Various Receiver Bases ...............

43

54

70

ix



I INTRODUCTION

This is the second quarterly progress report of a study to investi-

gate some of the many possible uses of adaptive antenna circuits for

communication, to and between vehicles on an interplanetary mission. It

is assumed that the main vehicle, the bus, flies by or orbits the target

planet and when in the vicinity releases a smaller vehicle, the capsule,

to enter the planet's environment for a hard or soft landing. Communi-

cation between the earth and the, bus is •specified as being within the

presently used S-band of frequencies, but between the bus and capsule

the best frequency of operation is yet to be established: In addition

to communication, the adaptive antenna circuitry should be considered

for other purposes as well, such as providing navigational and environ.-

mental information.

In the first quarterly progress report the analysis was started of

a particular cylindrical antenna configuration in which all the receiver/

transmitter elements are used for any azimuthal direction of the antenna

beam. This was done by focusing the energy to and from the elemental

radiators by means of a cylindrical geodesic lens. For this antenna the

computed gain was generally less than one dB below the postulated theoret-

ical maximum value and required no switching of elements as the vehicle

rotated.

The first Quarterly Progress Report also included a study of the con-

ditions to be expected in the vicinity of Mars, particularly as they would

relate to Communications with a capsule entering the Martian environment.

During this second quarter, work has progressed on all three of the

tasks, which are re-enumerated below. Each task is under a task leader,

but it has not been possible to keep the tasks isolated from each other

as had been planned at the start of the project.

Task I-Antenna Concepts: System and analysis aspects of antenna

configurations

Task II-Environmental Conditions: Specific environmental conditions

and their effect on system and component configurations



Task Ill-Phase Lock Loops and Adaptive Circuitry:

behind the antenna elements.

Ci rcui try

A particularly important problem, which cannot conveniently be as-

signed exclusively to any one of the above tasks, is that of space vehicle

spin. It is not discussed much in this report but will receive increas-

ingly more attention in subsequent work. System study is another area

which is difficult to categorize under the above task headings.

During the quarter, three additional particular antenna configura-

tions were analyzed, while environmental effects and direction-finding

techniques were studied without relating them to any particular config-

uration. Each configuration was treated as a retrodirective antenna, rather

than as the more general self-adaptive antenna.

A start has also been made on the analysis of various communications

systems which might be used on the proposed mission as well as the use

of adaptive circuitry for obtaining directional information.

This second quarterly report incorporates the report for the sixth

month of the contract.

At the end of the second quarter, sq percent of the contract funds

remained on the project. The average rate of expenditure of contract

fuuds during tile last month of the quarter has been equal to the average

rate required for tile contract as a whole. The rate of effort will there-

fore be increased slightly for tile remaining two quarters of the contract.

2



I I PERFORMANCE DURING THE SECOND QUARTER

A. TASK I--ANTENNA CONCEPTS

1. BASIC ANTENNA CONFIGURATIONS OF THE

CYLINDRICAL-LENS TYPE

The first quarterly report I* included a fairly comprehensive analysis

of the cylindrical-geodesic-lens biconical-horn adaptive antenna used as

a retrodirective antenna. The mathematical techniques used for the

analyses of this antenna were described and some of the computed antenna

patterns were reproduced. A table of results showing comparative antenna

gains derived in five different manners was also reproduced for eight

antennas of the same general configuration but with different parameters.

It was pointed out that the result of primary concern of a retrodirective

antenna is the maximum effective radiated power (EBP) in the retrodirection.

In the final analyses, it is therefore probably not necessary to compute

the re-radiation pattern except as one method of obtaining an absolute

value of the gain in the retrodirection. However, for the sake of complete-

ness and because it was relatively easy and inexpensive to do so, most of

the patterns for each of the variations of the first antenna configuration

were computed.

a. DISCRETE-LINE-SOURCE RADIATOR CONFIGURATION

Mention was made in the first quarterly report that work had

also started on a second basic antenna configuratio 4, known as the discrete-

radiator cylindrical-geodesic-lens antenna. This is shown in simplistic

form in Fig. 1. During the second quarter, the computer analysis of this

configuration was continued and some results obtained. As will be apparent

from the theory of the analysis procedure, the computation necessary to

obtain a single point of a retrodirective pattern is quite extensive and

increases approximately as the square of the linear dimension of the antenna.

Some effort was expended in trying to reduce the cost of computing each

References are listed at the end of the report.
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FIG. 1 A CYLINDRICAL-GEODESIC-LENS MULTIPLE-LINE-SOURCE ANTENNA



point by streamlining the computation procedure; however, it soon became

obvious that the cost of computing complete retrodirective antenna patterns

for each set of antenna parameters would be prohibitive. Since the shape

of the main beam is an important characteristic of any antenna, a portion

of the antenna pattern in the vicinity of the main beam was computed in a

few cases. In other cases only the gain in the retrodirection was computed.

Some effects of the variation in signal frequency, the effect of using a

different frequency for receiving and transmitting from thesame antenna, and

the effects of rotation of the retrodirective antenna (vehicle spin) were

investigated. Investigations of the extremely important effects of vehicle

spin on signal spectrum will not, however, be reported in this present work.

b. THEORY OF ANALYSIS PROCEDURE

The basic cylindrical geodesic-lens multiple-line-source antenna

is shown in Fig. 1. It consists of M elemental radiators each connected

directly to a receiver/amplifier/transmitter, at what will be referred to

as the bottom of the cylindrical geodesic lens. At the top of this lens

are N waveguides, each feeding an identical line source radiator which has

considerable gain in the axial or vertical direction but only 4 or 5 dB

in the azimuthal direction. The peak of this radiation from each line

source is assumed to be radially outward There are, of course, also N

nf these line source radiators.

Each of the M elemental radiators is coupled to each of the N

line source radiators by several different coupling paths within the

cylindrical geodesic lens. This is shown in Fig. 2 where the cylindrical

lens is "rolled out" or developed into a flat plane so that the coupling

can then be represented by straight lines between each of the two points

considered to be coupled. There are an infinite number of coupling paths

between any point at the bottom of the cylindrical lens to any point at

the top but only three such rays will be assumed to exist in this analysis

as shown in Fig. 2. The contributions from higher order ray numbers is in

fact very small and will be assumed negligible. It can now be seen that

in order to compute a single point in the far field radiation pattern of

such a retrodirective antenna, it is necessary to sum the electric vectors

from N/2 line source radiators. Each radiator is in turn coupled to M

transmitters by three different paths. Another way of putting this is to

say that each of the M amplifier/transmitters feeds each of the N/2 effective

radiators by three different paths; thus, there a_e in effect 3N/2 rays



contributing to each point in the radiation pattern from each elemental

amplifier/transmitter. This compares with two rays for the biconical-

horn antenna configuration previously reported, l Since the contribution

from each ray must be added vectorially in the far field, the magnitude

of computation becomes apparent.

N
"Z+I N n=! 2 3

• I.1.1 .I.1.1 .I I.I. I I.I

2_WR

G_a) WRL

M I m#l

H(a)

PHASE
CENTERS

I.I I.I
TOP OF LENS =I

I
-I

I
I
I

PHASE

FIG. 2 GEOMETRY ASSOCIATED WITH A SINGLE GEODESIC-LENS RADIATOR

AND A SINGLE LINE-SOURCE RADIATOR
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C. COUPLING WITHIN THE GEODESIC LENS

As is demonstrated in Fig. 2, the coupling between any one of

the M amplifier/transmitters and any one of the N waveguides at the top

of the lens is the vector sum of three rays, the electric intensity of

each being a function of the elemental radiation patterns of the two

apertures at the ends of the lens, and the space attenuation between the

two phase centers. It is, of course, quite conceivable that at some fre-

quency the resultant vector could be zero, indicating no coupling between

these two apertures. Since the lens is a two-dimensional device, the

space attenuation of power within the lens is assumed to be simply propor-

tional to the inverse of ray length WRL_/Cos a, giving Cv/_os a as the

amplitude space attenuation factor.

mni

_n_

_n

m

T

N

Other parameters of the antenna are defined below:

is the angle between the peak of the mth elemental

radiator within the geodesic lens and the nth wave-

guide at the top of the lens, via the ith ray. In

a right-cylindrical lens (see Fig. 2), the same

angle applies between the ray and the peak of the

elemental pattern of waveguide at the top of the

lens. (-_ < a< 7).

is the angle between the radial at the nth line-

source radiator (the azimuthal dlrectio_ of the

peak of its beam) and the far-field observation

point for which thepattern is being computed.

is the angle from a fixed azimuthal reference on

the vehicle to the phase center of the nth line

source radiator. It is also the angle to the nth

waveguide within the cylindrical lens.

is the angle from the same fixed reference to the

mth elemental radiator at the bottom of the lens.

is the azimuthal angle between the fixed reference

and the retrodirection.

is the azimuth angle between the retrodirection and

the far field observation point.

is the total number of line-source radiators (and

also the number of waveguides at the top of the lens).

For the present they will be assumed equally spaced.

It is assumed that there is no mutual coupling between the separate radiators at the same end of
the lens.



M is tile total number of elemental radiators at

the bottom of the lens, (also assumed equally

spaced for the present)

R is the effective radius of the line source

radiators measured in wavelengths of the pilot

signal.

R' is this effective radius measured in wavelengths

of the retransmitted signal.

WR is the mean effective radius of the cylindrical

geodesic lens.

WRL is the effective length of the cylindrical lens.

E(fi) is the amplitude function representing the

azimuthal radiation pattern of each of the line

source radiators. It is assumed to be zero

except when (- 7/2) 2 fl 2 (_/2).

H(_) is tile equivalent function associated with the

waveguide ends coupling into the top of the

geodesic Iens.

G(_) is the equivalent function associated with the

elemental radiators at the bottom of the lens,

each of which is coupled to an individual

receiver/amplifier/transmitter.

The azimuthal angle associated with the most direct path between

tile mth elemental radiator and the nth waveguide can be defined as the

first ray and is given by

(2)A = 2_ + _ - _6
mnl p m

where p = 0 or ±i such that -_ < A < w.' mnl --

is given by

The second most direct ray

and will satisfy

I<. 1 -- 27T- IA I (2)

-2_ < A < - w for A positive
an2 -- _nl -

and

< A < 2w for A negative
-- Mn2 -- mnl

(Tile sign of A is of no significance if the elemental radiator patterns
Mni

are symmetrical and tile relativistic effects of the vehicle spin can be

neglected. )



Similarly

IA..31

By simpIe geometry (see Fig. 2)

2_ + IA
Mn[

(3)

A
In

= arc tan _ (4)
ani L

The net amplitude coupled between the mth amplifier/transmitter

and the nth line source waveguide, via the ith path is then given by

IA _ ] = G(a i )ft(a i )¢Cos a _ (5)

The electrical length of this ray is given by

= 2wRWL Sec a radians (6)
mni lni

The net coupling between the nth elemental radiator and the nth waveguide

is then the vector sum:

3

i=1

(7)

which holds equally for the pilot beam and the retransmitted signal, pro-

vided R' replaces R.

The re radiated powers can now be computed using the same general

procedure that was described for the cylindrical-geodesic-lens biconical-

horn antenna in the first quarterly report.

Again, the ray length outside the antenna from the distant

observation point (located a distance S away and having a relative azimuthal

direction T) to the nth line source radiator is

S-R_ Cos fi_y = Rk(_- Cos ft.?) . (8)

9



The total relative phase difference from each of the M elemental

radiators to the distant observation point is

77_. i = 27rR(WL Sac a..i - Cos fi.y)* (9)

Since each line source radiator has its own azimuthal antenna

amplitude function E(fi.y) there will be an additional modification to the

amplitude of each vector.

If now a pilot signal is received from direction @ (i.¢., T = O)

the signal received at each of the M elemental radiators will be the vector

sum.

N 3

B = [Ble in" = _ _ E(fl,,o)iAile j_'"i (10)
n=l i=1

d. COMPUTATION OF RERADIATION PATTERN

It is again assumed that the conjugate circuitry associated with

each elemental radiator reverses the sign of _ on reradiation and that the
m

reradiated power is some function of the received signal amplitude [Bj[.

(In the particular results presented below, the reradiated amplitudes are

all assumed to be equal.)

By using the reverse procedure, the relative signal amplitude

apparent at some distant point at an azimuthal angle 7 from the pilot

signal, which is due to transmission from the mth transmitter via the

nth line source radiator and the ith path within the geodesic lens, will

be given by

where

D ,,iy = E(fi,,gz)]A i[e jg'"iy (11)

_..iT = 2wR'(WL Sec a i - Cos fl.y - _j) (12)

It will be assumed for the present that the frequencies appearing at each of the elements is identical;

hence, S/(R_) is identical for all values of n and can be ignored, Due to vehicle spin, and hence rela-

tive Doppler shift, this will not necessarily be true for very large values of S.

10



The relative field amplitude in any azimuthal direction T is then given

by the vector sum

N 3

m=l n=l i=1

(13)

This value is more appropriately designated in dB by

Fy = 20 logl0 ]Dy[ (i4)

This value has been computed for several points at or around

the retrodirection and some of these results are presented below.

e. DETERMINATION OF ANTENNA AZIMUTHAL GAIN

As was done in the first quarterly report for the biconical-

horn antenna, the peak power of the reradiation pattern is compared with

the average power radiated in all directions. It was not possible to

reuse Methods 1 and 2, requiring integration of the reradiation patterns,

since patterns were computed only over a small arc, and sometimes just a

single point, rather than for all azimuthal directions. The gain values

previously obtained by these two methods were in all cases within 0.06 dB

of each other, and in each case about 0.2 dB higher than the value obtained

by Method 4. This latter method involved the computation of the total

energy radiated by the elemental radiators within the geodesic lens, and

then made the assumption that this was all radiated into space without

reflection loss from the discontinuities within the antenna. The average

value of the resultant radiation intensity is designated by Q (in dB).

Such a condition is easier to realize in the case of the biconical-

radiator antenna than in this discrete-line-source antenna where the

energy must be coupled, without loss, from a TEM line into adjacent wave-

guides. The computed value of gain resulting from this technique should

be reasonably accurate, if perhaps a little optimistic.

It has also been assumed that each radiating element is optimally

matched to its appropriate transmitter at all times. This is equivalent to

neglecting mutual coupling which, in practice, might vary with vehicle

rotation.

11



f. RESULTS OF COMPUTATION

i. Introduction

Some results of a series of computations are shown in the

following figures.

Figure 3 is the computed pattern used as the reference for

most of tile rest of the computations, and has the following values of co-

efficients.

B = 10,000 E(fl) = 10 -24C_/M)2
2

B'/B = 1.000 G(a) = 10 -2*(we_/_)
2

W = 1.00 H(a) = 10 -24(wea/eM)

L = 3.00 @ = 2 degrees

M = 40 c = 2

N = 80

The fact that the retrodirectio_ is 2 degrees from the zero

reference of the antenna (which is an axis of symmetry) accounts for the

computed pattern being asymmetrical. It should be noted that although

points have been plotted every one degree this is not close enough to make

a reliable interpretation of the correct pattern shape, including null

depths, etc. Consequently, the computed points have been joined by straight

lines.

It should also be noted that each point represents the

vectoral summation of 3 × M x N/2 = 4800 field intensities, each of which

involves the product of at least four computed quantities.

The 3-dB beamwidth as well as the gain in dB, computed by

subtracting the value of Q from the computed signal intensity in the retro-

direction, is shown on Fig. 3 (as well ason subsequent patterns). Using the

same argument as used in the first quarterly report, the maximum possible

theoretical gain of this antenna averaged over all azimuthal pointing

directions is postulated as

P = 10 logl0 M = 16 dB
(15)

reasonable.

The compared value of gain, 14.66 dB, thus appears quite

12
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ii. Variation in Max EBP with Antenna Spin

Figure 4 shows the computed value of gain in the retro-

direction as the antenna is rotated through 360/M degrees which represents

one cyclical period for this configuration. It can be seen that the average

computed value of gain is about 15.0 dB and it varies by nearly ±0.5 dB.

This variation could be very undesirable and compares unfavorably with the

similar computations made for the biconical-horn version, where no gain

variation was observed (for two computed values of maximum gain).

iii. Variation in ERP with Change in Frequency

The gain in the retrodirection was computed for an antenna

with the same characteristics as tile reference antenna except that the

operating frequency (which again was the same for receiving as for trans--

mitting) was increased by nearly 0.i percent in increments of 0.01 percent.

The EBP, or gain, was found to decrease by 0.06 dB in an apparently linear

manner. Since the gain of any antenna would normally increase when the

frequency is increased it is assumed that the small decrease observed is

part of a superimposed cyclical variation.

iv. Variation in ERP as Retransmitted Frequency

is Changed

it is almost certain that the receive and transmit fre-

quencies will be different for any retrodirective system; and this fre-

quency separation is likely to be at least a few percent.

If one antenna is used for receiving the pilot beam and

each elemental receiver of this antenna is coupled to the corresponding

transmitter of a separate transmitting antenna, which has all dimensions

exactly scaled in the ratio of the operating wavelengths, then this fre-

quency difference is not very important. If, on the other hand, the same

antenna is used, together with simple phase-conjugating networks, then

the frequency separation will definitely cause "defocusing", which will

reduce the ERP in the retrodirection. 2 If more complex conjugating cir-

cuits are employed, involving signal frequency multiplying and dividing,

then this defocusing can be removed, a Such a scheme is discussed under

Task III (Part C below).

14
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To determine the effect of this defocusing, antenna gains

were computed as a function of retransmitted frequency. The gain in the

retrodirection was found to fall by nearly 6 dB for a retransmitted fre-

quency increase of 5 percent. Three patterns, one of which is the refer-

ence pattern shown in Fig. 3, are shown in Fig. 5. The gain in each case

is with respect to an omni-azimuthal element of equal elevation beamwidth.

Figure 6 shows the azimuthal gain in the retrodirection with respect to

the theoretical maximum value of 16 dB. The fact that the retrodirection

was taken as 2 degrees from an axis of symmetry of the antenna no doubt

accounts for the nonmonotonic form of Fig. 6 and the fact that the maximum

ERP is not always in the retrodirection (see Fig. 5).

v. Variation in the Number of Line-Source

Radiators, N

Figure 7 shows a set of patterns for three similar antennas.

The number of line-source radiators, N, is varied from 40 to 80. The

elemental radiation pattern is also automatically modified, as can be

seen from the definition of E(_) and H(a). The reference pattern of

Fig. 3 (N = 80) is again reproduced.

It can be seen from Fig. ? that the gain actually increases

as the number of line-source radiators is reduced (although the number of

elemental transmitters, M, has been kept constant at 40). By interpola-

tion from Fig. 4 it can be estimated that about 0.4 dB of this apparent

increase in gain of nearly 1.0 dB can be attributed to the cyclical

variations of the max ERP with _. There is at present no explanation

for the remaining one-half dB.

The inference is that there is no point in increasing

the number of line-source radiators and hence the complexity of the

antenna, in order to improve antenna gain. It is quite likely however

that fewer radiators will lead to larger gain variation with spin, but

no direct measurements have yet been made to confirm this.

vi. Variation in the Elemental Radiation

Patterns

In all the results presented above, the number of elemental

radiators, M, has been kept constant at 40. The radiation pattern of each

of these elements denoted by

2
G(a) = 10 -24(wna/cM)
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has also been kept constant (except for minor variations in B as the fre-

quency was varied). The constant I/C is the proportion of available arc

at the bottom of the cylindrical lens that is used for each elemental

radiator. In the above results c has had the value 2, indicating that twice

as many similar elemental radiators could have been fitted into the space

available. For such an arrangement, i.e., M = 80, the mutual coupling

between adjacent radiators would be considerably higher, and previous

results 1 have indicated that the antenna gain per transmitter would not

increase and may very well decrease. The larger number of transmitters

would however increase the ERP for the same total power input at the

expense of more receiver/amplifier/transmitters.

The effect of this parameter c was investigated by assign-

ing it different values and computing the gain in the retrodirection. ]'he

following results were obtained.

for c = 1.0 1.5 2.0

gain = 14.58 14.88 14.66 dB

Since the accuracy of tile computed gain is only about 0.5 dB the minor

differences between these values of gain are considered insignificant.

Thus it would appear that for a given diameter antenna and given number

of transmitting elements the efficiency with which the available aperture

within the lens is used is not very significant.

vii. Characteristics of a Smaller Antenna

Continuing the general investigation of the various antenna

parameters, the linear dimensions as well as the value of M and N were

halved. Computed patterns for the cases of N = 20 and 40 are shown in

Fig. 8. It can be seen that the antenna with the smaller number of line-

source radiators gives a gain three-quarters dB higher than the other one.

This is consistent with the results shown in Fig. 7. The beamwidth for

the higher gain antenna is also narrower but a very high side lobe level

is apparent.

2. CIRCULAR ARRAY OF OMNIDIRECTIONAL ELEMENTS

a. INTHODUCTION

One form of retrodirective array that might be suitable for use

with a spin-stabilized vehicle consists of line-source elements mounted at

one end of a cylindrical vehicle, as shown in Fig. 9. The beamwidth
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of each element in a plane through the vehicle spin axis would be rela-

tively narrow, as determined by the length of the element in wavelengths.

Again, orientation of the beam in this plane would be provided by spin

stabilization of the vehicle. Each element would have a very broad

beam in the plane perpendicular to the spin axis, but the array as a

whole would have a narrow beam in this plane. Orientation of the array

beam would be provided by retrodirective circuitry connected to each

line-source element.

For purposes of the present analysis, it is assumed that each

element has an omnidirectional pattern in the plane perpendicular to the

spin axis, and that mutual coupling and shadowing of one element by another

will have negligible effect on the array pattern. In actual practice, the

element diameter would probably be large enough compared to the wavelength

and compared to the interelement spacing that shadowing would not be com-

pletely negligible. Also the element pattern for an element in the array

would not be exactly omniazimuthal, due to mutual coupling, even if the

element pattern was omniazimuthal for a single element in free space. An

additional effect of mutual coupling would be to make the input impedance

of each element a function of its location in the array. Therefore, the

assumption of equal current flowing on each element, which is used in cal-

culating the radiation patterns, is not equivalent to having equal power

radiated from each element.

Analyses of circular arrays of omnidirectional radiators are

available in the literature, but the numerical results that have been

presented are for smaller numbers of elements and for smaller array diam-

eters than are of interest for the present application. In this section

of the report, properties of circular arrays will be reviewed, and some

calculated patterns will be presented for arrays of 30, 60, and 90 elements

on a 20-wavelength diameter. Also, the gain modulation as arrays of 60

and 61 elements rotate will be given.

b. PATTERN SHAPE

Whether a circular array of elements radiates a broad or a

pencil beam, as well as the direction of a pencil beam, depends on the

amplitude and phase of the current in each element. Of primary interest

in the present application is a pencil beam radiated in the plane perpen-

dicular to the spin axis of a space probe. It will be convenient here

to refer to this plane as the azimuth plane. The proper current
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distribution to form a pencil beam from a circular array has been con-

sidered in detail by several authors, +7 and thus need not be derived in

detail here. Rather, a few of the fundamental equations will be given,

and some calculated patterns shown. The primary reason for considering

the pattern shape and side lobe behavior is to understand why the gain

of the array changes with array orientation, and to establish how many

elements are required to keep the gain reasonably constant. The form of

the equations presented will closely follow Knudsen. 4

Referring to Fig. 10, it is readily seen that in order to launch

a plane wave the proper current phase lag in the kth element in an array

of N identical omniazimuth elements equally spaced around a circle of

radius R is given by

(2 k )@k = 2_B cos N _i , k = 1,2, ..., N.* (16)

R

• 00o 5

• 4 TO POINT
• OF' PATTERN

e3 CALCULATION

cit N NORMAL TO, INCIDENT AND
TRANSMITTED

•N-I
WAVEFRONTS

• N-2

TA--5574-34

FIG. 10 DEFINITION OF RING-ARRAY PARAMETERS

The symbols used for the discussion o f a particular antenna type will in general be applicable only

to that type.
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Here R is measured in units of wavelength, and the phase is in radians.

The phase reference is the center of the circle. The angle _i defines

the orientation of the array with respect to the incident rayalong which

the transmitted beam is to be pointed (the retrodirection). Equation (16)

also gives, of course, the relative phase lead of the current induced in

each element by a plane-wave incident pilot signal, assuming mutual cou-

plingbetween elements to be insignificant. Changing phase lead for an

incident signal to phase lag of a transmitted signal is another way of

stating that a phase conjugate network is required on each element of a

retrodireetive array.

The far-field amplitude pattern is obtained by summing the

contribution of the individual elements in the array. For unity current

amplitude in each element, the resultant amplitude pattern is proportional

to 4

N

E = E exp j2wR os ¢i - 7 - cos _ - _i (17)
k=l N

For the special case of an even number of elements, exp (jx) can be

replaced by cos (x). 8 To reduce the time for a digital computer to

calculate the patterns, Eq. (17) was rewritten using a trigonometric

identity to obtain Eq. (18).

N

j 3/ ( 27rkE -- E exp sin : sin :
k=i

The computer evaluates trigonometric functions using a many-termed power

series, which is relatively time consuming compared to operations of

multiplication and addition. Thus even more computer time was saved by

using the following recursion relations.

2_k T [27r(k - 1) 2] 27rN _bi -_ = N qSi = + --N (19)
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thus

(2__k __) [277(k - 1) __] __27rsin .-- qb i - = sin N q5 i - cos N

F'7+ cos - qb i - sin N

(20)

cos - ¢, - -- cos N -7 c°sT

sin [27r(k- 1) 3'] 2rrN _bi - "_ sin -_

for k = 1, 2, ..., N

(21)

That is, to find

(7sin . -- q6i -

for all values of k, it was necessary to use the power series for the

trigonometric functions to evaluate only

2w 2_
sin -- , and cos

N N

Some characteristics of the radiation patterns of circular

arrays having different numbers of elements on the same diameter circle

are i11ustrated in Figs. ii through 13.* For each of these figures the

array diameter is 20 wavelengths, and the number of elements is 30, 60,

and 90 for the respective figure. It is seen that the main beam and the

These patterns were machine plotted, connecting the COmputed points that are spaced every degree by
straight lines. The finite point spacing does not show the true depth of the nullsm or the peaks
of some lobes.
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first several side lobes are identical in the three figures. Also note

that the side lobes fall off in a well-behaved manner out to a certain

angle, beyond which the lobe height increases significantly and the lobe

shape becomes less systematic. The more elements there are in the array,

the further out in angle are the side lobes well behaved.

These characteristics of the patterns from circular arrays can

be explained by rewriting Eq. (17) as a series of Bessel functions. 4

GO

E = J0 47TB sin + 2 _B sin T cos N + q5i (22)

p--1

for N even, and

_O

E = Jo (477R sin_)+ 2 E J2,N(47TB sin _)cos [2pN(_ + +i) ]
p=l

z ( g) [ (g)}+ j2 J(2p+l)N 47TR sin sin (2P + 1)N + _b i (23)
p=0

for N odd. Here Jk(x) is the Bessel function of the first kind and of

order k. The leading term, which involves the J0 function, is the ampli-

tude pattern resulting if the circular array consisted of an infinite

number of identical omniazimuth elements. The summations can be con-

sidered as correction terms to account for the fact that the number of

array elements is finite. The main lobe and the first several side lobes

in the patterns of Figs. 11 through 13 are given by the J0 term of Eq. (22).

Where the side lobes no longer decrease monotonically is where the first

term in the correction series becomes important.

The first correction term that becomes significant in both

Eqs. (22) and (23) is a JN(X) function, where the order N is the same as

the number of elements in the array. For an array 20 wavelengths in

diameter, practical numbers of elements might lie in the range 50 to

i00, thus the correction series involve Bessel function of high order.

It is characteristic of Bessel functions of the first kind and of high

order that they have small value for arguments small compared to the

order. As the argument approaches the order, the function increases

rapidly to a positive peak, and then becomes oscillatory eventually

approaching a decaying sinusoidal waveform. For discussion of these
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functions see, for example, Jahnke and Emde, 9 and Watson. _ The location

of the first positive peak of the function JN(X) is given approximately

by n

x _ N + 0.808N U3 (24)

That is, the location of the highest of the first spurious side lobes of

the array pattern would be given by

sin _ _

Y N + 0. 808 N u3
- (25)

2 47rR

The exact location of the highest spurious side lobe will also depend

on the factor cos N(0.5T + _) in Eq. (22), or sin N(0,57 + _) in Eq. (23),

and on the side lobes of the J0 leading term.

Equation 25 gives the location of the first spurious side lobes

in terms of the number of elements and the array radius. Based on experi-

ence with the more familiar linear arrays, a more fundamental relationship

for spurious side lobes might be expressed in terms of the element-to-

element spacing. (In the case of linear arrays, the spurious side lobes

are referred to as diffraction or grating-lobes.) If we define D as the

element-to-element spacing measured around the circumference of the array*,

and measured in units of wavelength, then

2wR
D = -- radians (26)

N

Defining T_ l as the angle at which the highest spurious side lobe due to

the first correction term in Eqs. (22) and (23) can occur, we have

Ysl 1 0.404
sin-- = + (27)

2 2D (2wR)_3DU3

* The circumferential spacing D defined here is nearly the same as the spacing measured along the cord con-

necting adjacent elements when the number of elements is large. The two ways of measuring spacing are equal

to the same accuracy as the approximation sin (T/N)= _/N, where N is the number of elements in the array.
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Equation (27) has been plotted in F{g. 14 for several values of array

diameter. It is seen that the angle at which the first spurious side

lobes can occur is rather insensitive to the array diameter.

The side lobes far beyond the first spurious lobes require

additional terms in the correction series of Eqs. (22) and (23). For

the array diameters and numbers of elements that would be practical for

retrodirective arrays on space probes, however, only a few terms of the

correction series need be evaluated. As an example, for a 20-wavelength

diameter array with as few as thirty elements, only the J3o, J6o' J90,

and J120 functions would have significant amplitude. (For sixty elements

on the same diameter, only the J60 and J120 correction terms would have

to be taken into account.) Taking 4_R = 407 = 125.7, the first positive

peaks in the correction series in Eqs. (22) and (23) occur at 30.0 degrees

for the J30 term, at 60.3 degrees for J60, at 96.2 degrees for J90' and

at 161.2 degrees for J120"

C. SIGNAL AMPLITUDE-MODULATION DUE TO ARRAY ROTATION

Having discussed in some detail the shape of the array radiation

pattern, let us now consider the effect that the pattern shape has on the

gain (directivity) at the peak of the main beam. heferring back to

Eqs. (22) and (23), we see that the shape of the main beam and the first

several side lobes is determined by a J0 £unct, ion Lhat is independent of

the array-orientation angle _i defined in Fig. 10. The correction series,

which influence the farout side lobes, are functions of the array-oriei_tation

angle _i" Thus, as a spin-stabilized space probe with a circular retro-

directive array rotates, the side lobes of the array will change as a

function of time. An example was shown by the solid and dashed patterns

of Fig. 12, As the amount of power radiated into the side lobes changes

with time, the gain at the peak of the main beam will change also. This

will result in amplitude modulation of the transmitted signal at a fre-

quency related to the rotation rate of the space probe and the number of

array elements.

The computer program of Eq. (18) has been used to calculate the

directivity of some arrays as a function of array orientation. The

directivity at the beam peak was determined fIom the values of the

amplitude pattern, E(T), by numerically integrating
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2wE_. X
G = (28)

2
WE2(T)dT

An increment of one oegree was used for the angle, and Simpson's rule was

used to perform the numerical integration.* The factor 27 rather than 4w

occurs here since the integration is performed only over the azimuth plane

rather than over all space. To find the total directivity of an actual

array, the pattern in all directions would have to be taken into account.

Thus far, only 60- and61-element arrays with 20-wavelength diameter

have been used for complete modulation calculations. For the 60-element

array, the directivity was found to have an 0.24-dB peak-to-peak ripple,

varying in approximately a sinusoidal manner as a function of _i" The

minimum azimuthal directivity of 15.63 dB occurred at _i = 0, 6, 12 .....

degrees, and the maximum of i5.87 dB occurred at _i = 3, 9, 15, ... degrees.

In this particular case, the minimum directivity occurred when the beam

direction was lined up with an array element, and the maximum gain occurred

when the beam direction was midway between array elements. For the 61-

element array, the directivity had a peak-to-peak ripple of only 0.01 dB

as _ was varied. The minimum directivity of 15.88 dB occurred at

_i = O, 180/N, 360/N, ... degrees. The round-off of the computer printout

to the nearest 0.0I dB did not permit determination of the location of the

maximum directivity, but the symmetry of the results implied that maximum

directivity occurred at odd integer multiples of 90/N degrees.

Some calculations that are in progress for other numbers of array

elements have shown that the minimum directivity does not in general

occur for _i = 0. Based on the calculations that have been completed

to date, plus examination of Eqs. (22) and (23), it is possible to make

some general statements regarding the periodicity of the directivity

modulation. For an even number of elements, the directivity modulation

will be at a frequency

f, = Nfr Hz (29)

The calculated directivity was printed out by the computer to the nearest 0.01 dB. The error introduced

by tha one-degree spacing of calculated pattern has not been precisely determined. An indication of

the accuracy achieved is given by the fact that decreasing the sampling interval for a few 20-wavelength
diameter arrays changed the calculated directivity by no more than 0.13 dB in going from 2- to l-degree

increments, and no more than 0.01 dB in going from 1.0- to 0.5-degree increments.
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and its harmonics, where fr is the spin rate of the space probe in revolu-

tions per second. For an odd number of elements, the same equation applies

in general. For the special case where an odd number of elements is suffi-

ciently large that only the first correction term in Eq. (23) is significant,

however, only the even harmonics of Eq. (29) will be present in the direc-

tivity modulation. (As specific examples, for a 60-element array, f, = 60fr,

but for a 61-element array, f. = 122fr, plus harmonics.)

The fact that the 61-element array gave much lower directivity modula-

tion than did the 60-element array deserves special note. This was antici-

pated based on the fact that previous investigations dealing with smaller

circular arrays had found that an odd number of elements was better than

an even number. _m'13 For a large number of elements, such as 60 or 61, the

pattern does not appear by visual inspection to be a significantly better

approximation to a J0 function for an odd number of elements than for an

even number, in contrast to the results for small numbers of elements. 4

What is important here, however, is not obtaining a specific pattern shape,

but having the amount Of power radiated into the side lobes relatively

independent of the array orientation.

Note that, for both Eqs. (22) and (23), the first correction term

involves the same function, (except one has a cosine factor and the other

a sine factor). The significant difference between Eqs. 22) and (23)

is that for N even, the correction terms add either in or out of phase

with the leading J0 term, but for N odd the first correction term adds

in quadrature to the leading J0 term. At any given angle _, the correc-

tion term will sometimes be positive and sometimes negative, depending

on the array orientation _i" Since the correction term is of the same

order of magnitude as the side lobes of the J0 function, adding or sub-

tracting the two terms in phase can produce a much larger change in

magnitude of the resultant than does adding the two terms in quadrature.

Stated in symbols,

io bl Io Jbl-- > -- (30)
a-b a-jb '

where a represents the J0 term at a given angle T, and b represents the

first correction term at the same angle.
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Although more than the first correction terms can be significant

in Eqs. (22) and (23), the presence of the imaginary terms in Eq. (23) is

a significant fact that should not be overlooked. The presence of the

imaginary terms makes the power radiated into the side lobes less depen-

dent on array orientation for an odd number of elements than for an even

number. Thus, for nearly equal numbers of elements, an odd number of

elements is to be preferred from the standpoint of reducing gain modula-

tion due to array rotation.

d. OMNIAZIMUTH PATTEBNS

For certain portions of a space mission, it is conceivable that it

would be desirable to use the same array circuitry to form a pattern that

was essentially uniform in the plane perpendicular to the spin axis of

the space probe, rather than the usual retrodirective pattern. This brief

section will point out the proper approach to forming an omniazimuth pat-

pern, and will also warn against a poor approach.

The proper way to form an omniazimuthal pattern with a circular array

is to feed all elements with equal current magnitude and with a progressive

phase difference between adjacent elements such that there is an integer

number of 27 radians phase change in going around the array. This technique

was applied by Tillman, et.al.; 14 see also the references given in that paper.

Out of the azimuth plane, the array factor provides directivity in addition

to that provided by the elements in the array.

A second, but not recommended, way to approximate an omniazimuth

pattern would be to feed all the elements with the same phase. The array

factor for an infinite number of e_ements would then have a pattern

given by 4

E = J0(2_R sin 0) , (31)

where 0 is the angle measured from the array spin axis (perpendicular to

the plane of the array). The peak of the array factor is along the array

spin axis, but the array diameter in wavelengths could be chosen so that

one of the side lobes was in the azimuth plane. The element pattern of

the individual array elements could then be chosen, in principle, to

suppress the main beam and other side lobes of the array factor. There

are three problems with this approach. First of all, the positions of

the side lobes of the array factor change with frequency, so that a small
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change in operating frequency would scan the desired "side lobe" of Eq. (31)

out of the azimuth plane. As an example, with an array about 20 wavelengths

in diameter, a frequency change of only ±2.5 percent would place a null

rather than a peak of the array pattern in the azimuth plane. Secondly,

the element pattern would have to have very low response off of its peak

in order to be effective in suppressing the main beam and other side lobes

of the array factor. Thirdly, for a finite number of elements, correction

terms have to be added to Eq.(31), which will produce ripple in the

azimuth pattern of the array. 4 For a given number of array elements, the

ripple would be greater if the elements are driven in phase rather than

with the proper phase progression. This statement is based on examination

of Eq. (18) of Ref. 14.

3. CYLINDRICAL RETRODIRECTIVE ARRAY OF DISCRETE UNIDIRECTIONAL

LINE SOURCES WITH LOGICAL ELEMENT SWITCHING

a. INTRODUCTION

Another configuration of cylindrical antenna, which is particularly

significant because mutual coupling between its elemental radiators can be

made very small in practice, is one in which a number of discrete unidirec-

tional line source radiators are located around the exterior surface of the

spacecraft. Figure 15 provides an end view of such a cylindrical array,

showing particular elemental antenna patterns that are directed radially

outward.

For maximum overall gain of such an array, one should consider

the use of logical circuitry (or other means) to turn off power to those

elements that are not contributing substantially to radiation in the

desired direction. Because all elements on the back side of the cylinder

are invisible and cannot contribute any field in the desired direction,

they could be turned off. Furthermore, the directivity patterns of the

elemental radiators would most likely provide significantly less gain in

the desired direction as the angle from the radial approaches ±90 degrees,

so maximum gain would occur if somewhat less than 180 degrees of the array

were energized.

The primary objective of this analysis is to determine the

optimum included angle of energization for a cylindrical array of such

elements. For simplicity the particular elemental azimuthal pattern used

for the computation is the simple cosine-squared function.
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b. ASSUMPTIONS

The following assumptions will be used for the analysis:

Array Configuration - A total of N* elements are equispaced on

the circumference of the cylinder. It is assumed that there is no inter-

action (mutual coupling) between the elements. Within the included angle

of energization, each active element radiates unit power (which implies

saturated amplifiers in the retrodirective circuitry) with the pattern

described below.

Elemental Antennas - Each radiator is assumed to have a uni-

directional cosine voltage pattern (i.e., unidirectional cosine-squared

power pattern) of the form

2 cos _,, for 0 _ 18,1 _ _/2
E. = (32)

0, for _/2 < 18il _ w ,

where 0 i is the angle between the radial of the ith element and the radial

to the distant receiver. It is to be noted that

27_ (Es)2d_i
= 1

so all gains will be relative to omniazimuthal. All elements are polarized

parallel to the cylinder axes. It is further assumed that adjacent elements

are far enough apart to have negligible mutual coupling, so that the ele-

mental pattern is constant and not a function of look angle.

Retrodirectivity The array is phased by retrodirective tech-

niques so that all the individual contributions are precisely in phase

upon arrival at the distant receiving antenna; thus, the total field in

the desired direction may be obtained by coherently summing the contribu-

tions of each active element.

The symbols used for the discussion of a particular antenna type will in general be applicable only

to that type,
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b. SOLUTION

]'he parameters of interest are (a) RF power into the array,

(b) effective radiated power (EBP) in the direction of the receiver, and

consequently (c) the power gain, expressed as the ratio of (b) to (a),

as a function of the included angle of energization, a.

i. Coordinate Syste_

Let one element be located at _ = 0, and call this the

0th element. Then, for equispaced elements,

27ri
8 = -- , where i -- 0, -+1 +2 .... (33)

t N

and N is the total number of elements on the cylinder. Thus the voltage

contribution of the ith element can be expressed as

f 1 2v_\ N

2 cos k'_-] ' for 0 < ]il <-

E = - - 4 (34)

O, elsewhere

Now, consider an integer I describing the active elements,

within an included angle a, as follows:

a 2vI

.x 2 N (35)

m From this it can be seen that

N = 21 + 1 = No. of active elements. (36)

ii. Effective Radiated Power

The effective radiated power is proportional to the square

of the sum of the voltage contributions of all active elements; thus,

2

ERP = E_ = ki[£=-I Ei] in appropriate units. (37)
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For [_[_ax 2 w/2, E i = 2 cos (2ni/N) so

EBP
i=-I

Using the fact that

+l

F
i---m

cos ix = 1 + 2 cos x + 2 cos 2x + ... + 2 cos mx

sin (m + 1/2)x

sin 1/2x

we have for Eq. (38)

(38)

(39)

But,

SO

EBP

27ri 7r
4 sin 2 -7 + _)

2_I a

N ,ax 2

40)

ERP(a) = 4 • , for a < 7r

If, however, N >> w and a/2 >> n/N, we can use the approximations

(41)

and

sin2 (2 N)+ =

sin 2 (Tr/N) = 7r2/N 2
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Then, Eq. (41) becomes

ERP(a) -- --4 . N2 . sin2(2 )
772

(42

iii. RF Power Input

With unit power in each active element,

(¢)P = N = 2I + 1 = N + 1
L tl Q

(43

The above is an exact mathematical expression, but for N >> 77

Pin(O_) = N 44

Pi,, we have

iv. Power Gain

Using the exact expressions (41) and (43) for EBP and

ERP 4 sin 2 (a/2 + 77IN)/sin 2 (Tr/N)
G = , for a < 7r

P (a/277)N + 1 -
ttl

45

This again is an exact expression; using our simplifying assumptions it

reduces to

C(a)
4N sin 2 (a/2)

- for 0 < a <
_2 (a/277) ' - -

46

Figure 16 displays ERP, Pi and G as a function of the included angle a.

v. Angle of Energization for Maximum Gain

The simplified expression (46) for power gain is a trans-

cendental function of a. A numerical solution was obtained for the

maximum, at

a = 133.57 ° = 2.3312 radians (47)
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FIG. 16 NORMALIZED ERP, Pin AND G AS A FUNCTION OF a

an "opLimum"

At this optimum value of a,

from (42), ERP = 0.3434 N 2

from (44), P. = 0.371N
tn

from (46), G = 0.9228 N

vi. Comparison of Different Angles of Energization

Table I below illustrates the gain (above omniazimuthal) of

cylindrical array (a = 133.57°), a hemi-cylindrical array,

Table I

COMPARISON OF ARRAY GAINS

ANTENNA TYPE

Optimum Cylinder Array

(a = 133.57 ° )

Hemi-Cylinder Array

(a = 180 °)

Full-Cylinder Array

(a = 360°)

GAIN (ABOVE OMNIAZIMUTHAL)

0.9228 N

0.8104 N

0.4052 N

dB

i0 log N- 0.35

10 log N- 0.91

I0 log N- 3.92

43



and a full cylindrical array, where the active elements have a unidirec-

tional cosine-squared power pattern.

From Table I it may be seen that, for a given number of elements on

a cylinder, the gain of the hemi-cylindrical array is two times (3 dB)

greater than the full cylindrical array, and that the optimum angle of

energization (a = 133.57 °) yields approximately 0.56 dB more gain than

the hemi-cylindrical array, and an antenna whose gain is only 0.35 dB

less than the postulated maximum possible value.
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B. TASK II- ENVIRONMENTAL EFFECTS

1. GENERAL

Planetary reflections are important in any communication system when

the space vehicle is within many thousands of miles and illuminates the

planet. The effects of planetary reflections upon retrodirective array

signal characteristics have been studied. A general description is pre-

sented here for the case when amplifier gain is linear at the retrodirective

array subapertures. A more comprehensive report on the study will be in-

cluded in the final report.

2. PLANETARY MODEL

Pulse measurements of backscattering from the moon at 3000 MHz indi-

cate the moon is a rough surface and diffuse scatterer at that frequency. 15

The pulse shape and fluctuation can be explained by diffuse reflection

rather than by specular reflection from several smooth areas on the moon's

surface. Measurements at 400 MHz, however, indicate the radar echo from

the moon is a combination of specular reflection from a quasi-smooth sur-

face and diffuse reflection from a rough surface with the former pre-

dominating. I_18 The power refleetivity of the moon for CW and long-pulse

transmission (pulse length _ 200 #s) lies between 0.1 and 0.01. 19 The re-

flectivity is reduced for short pulses which see a smaller cross-section

than larger pulses. The power reflectivity corresponding to a pulse of

5 _s duration or shorter is typically 5 x 10 -4

Venus is a better reflector than the moon with a power reflectivity

of 0.10 to 0.15 (CW and long pulse transmission). 19 Radar measurements

indicate that the roughness of Venus is comparable to the roughness of

the moon.

Thus, planetary surfaces should have rms surface roughness dimensions

in many wavelengths at frequencies considered for retrodirective arrays

on space vehicles (frequencies > 1000 MHz). The power reflection coef-

ficient of rough planetary surfaces should typically be less than 0.1. 19

Signals reflected from the surfaces will be diffuse and will statistically

fluctuate in time due to the rotation of the planet and the movement of

the space vehicle. The statistics of fading should in general be described

by the ttayleigh distribution.
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The fluctuations in the reflected signal from the planet will be

correlated at all retrodirective array subapertures. As a result of this

signal correlation, the retrodirective antenna, if it were only to handle

signals reflected from the planet, would still produce a coherently summed

signal at the distant (Earth) receiving station (assumed to be located at

the pilot transmitting station). There would, however, be a superimposed

phase and amplitude modulation, which would be a function of the surface

roughness and the relative rotation of the planet and retrodirective link.

When the direct link between the Earth station and the vehicle is also

considered, the planetary reflected signal will not be correlated with

the direct signal.

3. RECEIVED SIGNAL POWER

The signals received at retrodirective array subapertures interro-

gated by both direct and planetary reflected signals will be uncorrelated

and will add in power. The received power at subapertures interrogated

by only a planetary reflected signal will be a maximum of 10 percent of

the power received by those apertures directly interrogated, assuming a

10 percent power reflectivity at the planetary surface.

Thus the signal power received at the terminal receiving antenna,

assuming all subapertures under consideration are interrogated by both

direct and planetary reflected signals, might fluctuate as much as

0.5 dB above the nominal level if no planet existed. If half of the sub-

apertures are interrogated by direct signals and half by planetary re-

flected signals, i.e., when the vehicle is near the line joining the

planet and the terminal station, if the vehicle were near the planet,

and if equal power output is directed at all activated subapertures, the

power received could be 55 percent of the power received if no planet

existed. Roughly 3 dB gain in power could be obtained by activating in

the transmission mode only subapertures interrogated directly.

Activating only selected subapertures in the transmission mode would

require a signal-to-noise sensing device that activates the transmitting

circuit only above a minimum threshold. The minimum threshold could,

for instance, be i0 or 20 percent of the maximum subaperture signal-to-

noise ratio.
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Planetary reflections can modify the "free-space" retrodirective

antenna pattern. The power pattern can thus vary by 10 percent of the

maximum level.

4. SPECTRAL BROADENING

Signalsreflected from rough planetary surfaces will be spread in

Doppler frequency. The characteristics of the Doppler spread is depen-

dent upon surface roughness characteristics and upon relative motions

of the transmitter, the receiver, and the planet. Doppler spread may

determine the minimum input receiver bandwidth and thus the maximum re-

ceived signal-to-noise ratio.

Doppler spread, if planetary rotation determines the relative motion

of the planetary reflecting surfaces and the elementary scatterers, can

be in order of tens of Hz for the Moon, Venus, and Mercury, thousands of

Hz for Mars, Pluto, and Neptune, and hundreds of thousands of Hz for

Jupiter and Uranus. 19 If the relative surface and scatterer motion is

determined by spacecraft velocities (transmitter and/or receiver), the

Doppler spread could be thousands of Hz.
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C. TASK III--CIRCUITRY

1. ESTIMATED AMPLIFICATIONS, AND NOISE BANDWIDTHS FOR

RETRODIRECTIVE ELEMENTS ON h PLANETARY BUS

a. INTRODUCTION

If a bus to Mars, say, is to employ a retrodirective array for

transmission hack to Earth, then the active circuitry of the bus must

provide a very high power gain in order to satisfy mission requirements.

A primary purpose of the following calculations is to determine

(approximately):

(1)

(2)

The required power amplification for each
active retrodirective element, and

The maximum allowable noise bandwidth for

each element.

b. MARS MISSION PARAMETERS

For estimating purposes, we will take the following parameters

from the Mariner IV flight:

d = 135 x 106 statute miles (at Mars encounter)

F r = 2.1 GHz (spacecraft receive frequency)

F t = 2.3 GHz (spacecraft transmit frequency)

T e = 104 W (Earth transmitter carrier power) (70 dBm)

We shall also assume the new 210-ft diameter Goldstone antenna

is used, which, if an illumination efficiency of 54 percent is assumed,

provides the following gains:

G t = + 60.3 dB (2.1GHz)

G r = + 61.1 dB (2.3 GHz)

And, we shall assume that the active bus transmitters (i.e.,

retrodirective elements) will develop a total of 20 W of RF at 2.3 GHz.

A look ahead to Table II and Figs. 17-19 will also show the

use of the following assumed parameters:

L 1 = Earth transmission circuit loss = 1.0 dB

L 2 Bus receiving circuit loss = 1.0 dB

48



L 3 = Bus transmitting circuit loss

L 4 = Earth receiving circuit loss

T h = Noise temperature of bus receivers

C/N = Required carrier-to-noise ratio in
each retrodirective circuit of bus

= 1.0 dB

= 1.0 dB

= 1450°K

= +10.0 dB

C. RETRODIRECTIVE CYLINDRICAL ARRAY ANTENNA

All previous antenna configurations have been based on the

assumption that spin stabilization will obviate the need for pointing

the beam of a retrodirective antenna in the elevation plane. It has

been generally assumed that the beam would always point somewhere in the

plane perpendicular to the spin axis. In the following analysis the

more general case of an antenna capable of pointing in nearly any

direction (except near the zeniths) is assumed. In addition, the retro-

directive cylindrical array on the bus is assumed to have a 10_ radius

and 10_ axial dimension. Each element is an axial _/2 dipole, spaced

_/4 above the conducting surface of the cylinder. Elements are spaced

_/2 along the axial dimension (yielding 20 elements/row) and are spaced

_/2 along the circumference (yielding 40w= 125 elements/ring), for a

total of 2500 elements on the cylinder.

It is further assumed that logic circuitry is employed to turn

off those elements that are not substantially contributing to radiation

in the desired direction; only those rows within an included angle of

144 degrees (50 rows) are assumed active and all available power is

equally distributed among them (see Task 1, section 3 above), to give

near optimum ERP; so there are 50 x 20 = 1000 active elements in the

array.

For the k/2 elemental dipoles described, the gain is approxi-

mately +4.4 dB (above isotropic) for the elements directly in line with

the direction of the incoming wave (8 = 0 degrees), and is approximately

-2.0 dB for the extreme active elements (8 = ±72 degrees). (The average

gain of all active elemental dipoles can be shown to be approximately

+3.3 dB the effect of mutual coupling between dipoles is neglected.)
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d. CALCULATIONS

With the essential parameters now defined, we proceed with the

calculations. For the given array, we shall consider three different

bases (configurations) of elemental dipoles and receivers:

(1) One receiver per dipole (Fig. 17)

(2500 receivers required)

(2) One receiver per axial row of dipoles (Fig. 18)

(125 receivers required)

(3) One receiver per array (Fig. 19)

(1 receiver required)

The second configuration (one receiver per row) is probably the

only one of practical interest, although inclusion of the other two

provides useful references for comparison.

Table II gives the results of the calculations, and Figs. 17-19

display the levels, gains and attenuations in block diagram form.

Required Amplification--Reference to Table II shows that each active

retrodirective unit must be capable of the order of 150 dB power ampli-

fication of the received pilot, in order to produce the required output

level. Note that the required amplification per retrodirective unit is

the same for all three illustrated configurations. The point is, that

for assumptions of (1) fixed total antenna aperture size, and (2) fixed

total RF power in and out of the total aperture, then the required gain

per subaperture is independent of the number of subapertures into which

the total aperture is subdivided.

Noise Bandwidth--The maximum allowable noise bandwidth of each retro-

directive unit does depend upon the subaperture size (how many elemental

antennas per receiver), and upon the minimum tolerable S/N in tile retro-

directive units. If we arbitrarily say that the average S/N shall be

+10 dB, then reference to Table II shows that the second scheme (one

receiver per row) has a maximum allowable noise bandwidth of approximately

4280 Hz.

e. CONCLUSIONS

It has been shown that each active retrodirective unit on a

Mars bus must be capable of approximately 150 dB power amplification of

the received pilot, and that for one receiver per row the maximum

allowable noise bandwidth is approximately 4 Hz.
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Table II

EARTII/BUS LINK WITtt VARIOUS RECEIVER BASES

PARAMETER

T = Earth transmitter carrier power (10 kW)

I. : Transmission circuit Loss
[

(; : Earth antenna gain (210 ft dia
" 54 percent eff)

: Free-space attenuation (135 × 106 miles

G b = Bus antenna gain per receiver

(_/2 axial dipoles, spaced
k/4 above cyl. surface)

"Max: 0 = 0 °

Avg:

LMin: 0 = 72 °

I, 2 = Receiving circuit loss

C = Received carrier power Max :

Avg :

Mi n :

= Max. allowable noise bandwidth

(T n : 1450°K, C/N : +10 dR)

.

Max:

Avg:

I Min:

P : Req. ired receiver-amplifier output level
o (for 20 W total)

G a = Required receiver amplification Min:

Avg:

Max:

RECEIVER BASIS

ONE/ELEMENT

+70.0 di_n

-1.0 dB

+60.3 dB

-265.3 dB

+4.4 dB

+3.3 dB

-2.0 dB

-1.0 dB

-132.6 dB

-133.7 d[_n

-139.0 dBm

275 Hz

214 ltz

63 [lz

+13 dHm

(20 mW)

145.6 dB

146.7 dB

152.0 dB

ONE/ROW

+17.4 dB

+16.3 dB

+11.0 dB

-119.6 dI_n

-120.7 dl_n

-126.0 di_n

5500 ttz

4280 llz

1260 Hz

+26 dL_n

(400 mW)

ONE/ARRAY

T

T

V

+33.3 dB

w

-103.7 d[_n

214 kllz

+43 dt_n

(20 W)

N = No. of receivers required 2500 125 1

366,750 dB 18,338 dB 146.7 dB
(Avg.)

G T = Total on-board gain
required = N. Ga
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Tile circuitry for retrodirective units of this performance

will be quite complex, compared to the retrodirective circuitry which

has appeared in the literature t for earth satellite application, where

gains of less than 40 dB are specified and much wider bandwidths are

employed.

With this high gain requirement, one important problem will be

transmitter-receiver isolation.

A critical parameter in any retrodirective array is the phase

stability and uniformity of the circuitry. It may be expected that, for

conversion from 2.1 to 2.3 GHz with 150 dB power gain and 4 kHz noise

bandwidth, phase stability and uniformity on the order of ±10 degrees 2

will be a significant problem.

2. A DUPLEX RETRODIRECTIVE SCHEME FOR A MARS BUS

a. REQUIREMENTS FOR A RETRODIRECTIVE SCHEME

It has been shown in Part C-1 above that each retrodirective

transmitting unit on a Mars bus will require on the order of 150 dB of

power amplification of the received pilot, and that the allowable noise

bandwidth in each retrodirective unit is quite narrow (approx. 4000 Hz

for a "row" antenna of 20 elements).

In addition, there are several other design constraints on a

retrodirective scheme, for example:

(1)

(2)

(3)

The scheme should permit precise determination

of bus range rate (Doppler shift) at the earth
station.

Duplex operation will be required, which means,

since both signals are CW, that there must be

a frequency offset between receive (pilot) and

transmit frequencies, and a relatively large
separation (several percent) will ease fiiter

requirements.

Phase taper of the transmitted wave over the

cylinder due to frequency offset should be

negligible (<< _/2) to realize maximum gain.
This implies some form of compensation, if a

substantial frequency offset is employed.



b. BASIC OPERATION OF THE SCHEME

The basic operation of the scheme presented here is that, by

coherent division and multiplication, the retrodirective array transmits

a frequency that is 9/8 of the received (pilot) frequency.* The scheme

can use the carrier of the earth-bus command link as the retrodirective

pilot; a separate pilot frequency is not required.

i. Master Receiver

First, an omniazimuthal receiving antenna located on the

spin axis (see Fig. 20) provides one master phase-lock receiver with the

basic Earth carrier (pilot) frequency, shift by the one way Doppler but

free from any spectral splitting (phase modulation) caused by spin.

RETRO. ANTENNA ELEMENTS

,UAL LENGTH CABLES
TO ALL RETRO. UNITS

FROM MASTER RECEIVER

RECEIVER

(SEE FIG.21)

RETRO. UNIT #2
/ /

ETC. _ /
/

RETRO. UNIT =1
(SEE FIG.21 )

=ANGULAR SPIN
VELOCITY

OMNIDIRECTIONAL MASTER
RECEIVING ANTENNA

(ON SPIN AXIS)
T|-5574 -29

FIG. 20 PHYSICAL LAYOUT OF RETRODIRECTIVE ARRAY ON CYLINDRICAL LENS

* Any other convenient ratio of integers could be used.

56



This master receiver should be continuously phase-locked

to the received carrier, except during transfer from one earth station

to the next, as the on-axis antenna is always visible to the earth.

Also, this master receiver is used as the command receiver. This scheme

requires that the signal-to-noise ratio at this low-gain omniazimuthal

antenna be greater than unity.

ii. Retrodirective Units

Each retrodirective unit contains a phase-lock loop, and

the general functions of each retro unit (see Fig. 2I) are:

(1) Frequency Offset--the pilot frequency is
multiplied by 9/8 before amplification and
retransmission.

(2) Betrodirectivity--each retro unit multiplies

the spatial phase (relative to the plane of

the incoming pilot wave) by 9/8, and conjugates,

so the composite outgoing wave (at 9/8 _ ) is
also planar and is radiated back in the

direction from which the pilot signal (F r) was
received. Multiplication of the spatial phase

by the same factor as the frequency (e.g.,

9/8) eliminates all phase taper.

3) Data Modulation--the retransmission from each

retro unit is phase modulated with spacecraft
data and/or ranging modulation received from
the Earth.

ii. Features of the Scheme

The following features of this retrodirective scheme may

be compared with a simple "conventionaI" heterodyne approach:

(i)

(2)

First mixer does not conjugate spatial phase
as in the image frequency converter, for

instance, because the injection frequency is
below the receive frequency.

Receive leg employs an IF of 1/25 F *
r '

permitting amplification at a relatively low

frequency.

* Any other convenient ratio of integers could be used.
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(3)

(4)

Phase-lock loop employed in retro units to
extract pilot, permits

(a) very narrow noise bandwidth, and

(b) potential for extracting phase-lock

information for logical applications

(e.g., to control transmit leg, to
determine attitude, and to sense

malfunctions).

Multipliers rather than RF amplifiers can be

used in transmit legs.

C. GROSS DOPPLER SHIFT

Considering only Doppler shifts due to gross velocity of the

bus, and assuming that the velocity does not change in one round-trip

time, the bus receives a frequency which is precisely (relativistic)

where

r + V/c f_B

feb = Earth transmit frequency

Gross velocity of bus c.g.

Our retrodirective scheme retransmits a signal of frequency

Ft = (9/8)F r

and applying the (relativistic) down-link Doppler, the earth receiver

sees a frequency

which yields

+ V/c Ft

: + V/c/ F°

This is precisely equal to the two-way (radar) Doppler shift

of a signal whose frequency is (9/8)F 0.
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d. CONCLUSIONS

A method has been presented, by means of coherent division and

multiplication, to obtain a relatively wide spacing between the receive

(pilot) and transmit frequencies of a retrodirective cylindrical array.

This method would be applicable to a scheme where duplexers were used

on elemental antennas, or where separate transmit and receive antennas

were used but associated antennas are on the same axial line of the

surface of the cylinder.

Phase-lock loops are employed for the division function. If

the low-pass filter in the loop passes only the modulation frequency,

which is the same as the spin (1Hz or less), any modulation of higher

frequency will not pass through the retrodirective unit. Thus the

carrier of the earth bus command link could also be used as the pilot

for the retrodirective array, without having the command modulation

appearing on the down-link signal, as long as the spectrum of the command

modulation has no components in the passband (dc to 1 c/s) of the phase-

lock loops.

Frequency multiplication is employed in the output of the

retrodirective unit, so transistor and/or varactor multipliers would be

a convenient way of producing power at approximately 2 GHz with good

dc-to-RF conversion efficiency.

By using a signal derived from an antenna on the spin axis for

the local oscillator, the scheme permits precise determination of bus

range rate (Doppler shift) at the earth station. (It would perhaps be

feasible to derive this signal by means of a summation of the signals

from all retrodirective units, but the antenna on the spin axis is in

any event conceptually useful.)

3. RANGE AND RANGE-RATE TRACKING

a. PHILOSOPHY

Both range and range-rate tracking involve phase (or frequency)

comparison of a transmitted signal with the same signal reflected or

transponded by the spacecraft being tracked. If the spacecraft trans-

ponder is other than an RF amplifier, a local oscillator is required in

the spacecraft. Such an oscillator may be phase-locked to the received

signal and hence has a frequency derived from and coherent with the
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received frequency, as in the scheme presented in the above section.

Relatively complex circuitry is required and signal acquisition may be a

problem. Alternatively, the local oscillator may be free-running and

the signal returned by the spacecraft must be designed so that the

oscillator-frequency as well as range and range-rate information can be

extracted by the tracking station.

The Goddard Space Flight Center system2°is based on the second

concept. The returned signal consists of a carrier and a modulated sub-

carrier; both the carrier frequency and the subcarrier frequency relative

to that of the carrier are linear functions of the local oscillator

frequency and of the Doppler offset.

b. RANGE-RATE TRACKING

For nonrelativistic radial velocities, the shift in frequency

is directly proportional to the radial velocity. In the two-way systems

considered here it is assumed that the velocity can be considered con-

stant over the round-trip propagation time. Otherwise, more complex

systems are needed or the measured Doppler can be considered as an

average over the propagation time. Typically, the measurement is con-

sidered to be the vehicle radial velocity at the instant one-way

propagation time in the past.

Range-rate systems require that the frequencies transmitted

and those received be measured. The velocity is then easily calculated.

c. RANGE TRACKING

If a range-rate system can be kept in continuous operation

starting from a known range, range can obviously be obtained from a

simple integration of velocity. More typically, continuous operation is

not obtained due to equipment malfunction and earth rotation and so

cannot be relied upon. Then range must be determined separately.

Periodic ranging signals are frequently used. They should

have three distinct properties:

(i) Minimum range Uncertainty.

(2) No range ambiguity.

(3) Indication of needed correction.
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The range uncertainty depends upon the width of the auto-

correlation function peaks, which should be small. When tones are used,

a high-frequency is required; with pulses, narrow widths are needed.

The range ambiguity depends upon the spacing of the periodic

peaks of the autocorrelation function. Thus the period should exceed

the round-trip propagation time for the maximum range of interest. With

tones, a low frequency is required; with pseudorandom pulse sequences,

a long period is required. Frequently, the ambiguity problem becomes

much less severe because the approximate range is already known.

When, as is typically done, a copy of the transmitted signal

is delayed and cross-correlated with the returned signal, the correlator

output should indicate the change in delayrequired to achieve coinci-

dence of the two signals. Tones have this property; pulse sequences do

not. However, a pulse sequence derived from several shorter sequences

can be used to simplify this search problem.

d. GODDARD SYSTEM

The Goddard system uses a free-running transponder oscillator.

The up-signal is modulated with tones and/or pseudorandom codes. The

signal received by the spacecraft is doubly converted to produce a sub-

carrier, which modulates a down-carrier derived from the same oscillator.

Cascade phase-locked loops in the earth receiver extract Doppler and,

incidentally, the transponder oscillator frequency. The transponder can

receive up to three modulated signals simultaneously and convert the

modulation to separate subcarriers.

e. EXTENSION OF GODDARD SYSTEM

For a configuration consisting of an earth station, a space-

craft bus, and a capsule, the returned signal must be designed so that

the following can be extracted:

(1) Bus local oscillator frequency

(2) Capsule local oscillator frequency

(3) Earth bus Doppler

(4) Bus capsule Doppler.
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A feasible configuration using one unmodulated and two modu-

lated subcarriers is presented in Appendix A. This configuration has yet

to be considered in relation to a retrodirective array or any other type

of adaptive antenna.

f. CONCLUSIONS

Except for the fact that many amplifier/transmitters are

required on a retrodirective array, only minor modifications of the basic

Goddard transponder are required to derive Doppler for the earth/bus and

the bus/capsule links. The resulting signals, when suitable ranging

modulation is used, also can be processed to yield earth/bus and earth/

bus/capsule range information.

No phase-locked circuits are required on either the bus or the

capsule and only readily achievable oscillator stabilities are required

in the vehicles.

4. MAXIMUM LIKELIHOOD ANGLE ESTIMATION FROM A UNIFORMLY SPACED

n-ELEMENT LINEAR ARRAY

Consider an array of n elements separated by S wavelengths along a

line and receiving a plane wave at an angle fl from the perpendicular to

the line of the array. Let

k = 2_S sin fl (48)

and note that

[kl ! 2wS (49)

Let _i be the phase of the ith signal with respect to an arbitrary

reference phase. Let a be the phase of the wave with respect to the

reference at the first element. Then

_ = a + k(i - 1) + ni , (50)

where n i is the phase noise of the ith measurement; in vector form:

= aB + kA + N , (51)

where b i = 1 and a i = i - 1.
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Consider the plane defined by the vectors A and B* and consider

unit vectors in that plane along B and perpendicular to B, U, and,

U 2 respectively.

Then

B
u = (52)

1
(B_)_

C = A- (ATU1)U 1 (53)

C
U = (54)

2 (CrC)½

Consider the additional unit vectors of an orthogonal basis, _ all

perpendicular to the plane, and the n-by-n transformation M

Let

• °

T
U 2

M - r (55)
U 3

U r
• tl .

X = M_ (56)

and note that

Z = MN (57)

BrB = 12

B
= m

1
/2

(58)

* The transpose of B is denoted by B T

t See Appendix B.
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c_-A-[ -_(n- 1) _] _2 Yn

or

C_ = (i - 1)
n - 1

n

nEE 2

i=l

- (n + 1)i + (n +4 1)2 t

n(n + 1)(2n + 1)

6
- (n ÷ 1)

n(n + 1) (n + 1)(n + 1)n
+

2 4

n(n + 1)

12
[4n + 2 - 3n - 3]

(n + 1)n(n - 1)
=

12
(59)

and therefore

X
1

n

r_ b = 1U1 -- _ ¢_

i=1

= aUT[B + kU71A + UT[N

aC-'nn+ k_ _ - 1
2

?1

1

+ _n-n _"_. n i
i=1

(60)

and

X 2 t 12 _ Nn + 1)n(n - 1
i=1

(61)

also

X 2 = ur(aB + kA + N)
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but

and

T
U2A

[A - (ATU1)U1 ] T

u_8-- _u_u, = o (62)

= " A =

ATA- (ATU1) 2

(CrC)_ (CrC)½

[n(n - 1)(2n - 1) n(n - 1)2]_ 12 ]_6 4 (n + li(n - 1)

Hence

1)(4n-2-3n+3!][12 ' n(n + 1)(n12 .1)]_ [n(n+l)(n-1)]_= 12

(63)

fn(n +11)(n-1)]_ [ 12 ]_ _ (i n+ 1)X 2 = k -" " + (n + 1)n(n- 1) _ ni
i=1

(64)

Further, X 3 .... X are, of course, functions of

Xj = UTqb (65)

but, using (51), and noting that

for

such

UYB = V.rA -- o
1 J

j_>3

xi : U/N

(66)

(67)

and are not functions of a or k.
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If we assume that the n. are independent normal variables with zero
t

means and variances o-2, the maximum likelihood estimates of a and k will
A h

be those values, a and k, Ikl _ 1 such that the probability density

n

--- l

p(n) = (2_7o-2) 2 exp -_ NrN (68)
2o -2

is maximized or equivalently NTN is minimized.

From (56) and (51)

or

X = M_ = aMB + kMA + Z (69)

?l

X 1 = av/'_n + kv_n n - 1 + 1
2 "_nn _'_n'

i=l

70a

n + t)_-(n - 1 _ ni
n:l

70b

Xj = UrNj = Zj j = 3, 4, .... n 70c

is

The covariance matrix for the Z's

T = E(ZZ r) = E(MNNrM r)

= ME(NNT)M T

= O-2MMr = o-2 (71)
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and the probability density for the Z's is

n
m_

f(Z/a,k) = (27rcr2) 2 exp

1 X 1 - n_a - nc_k + X2- 12
2or 2

.=

(72)

We can maximize this probability, regardless of k, by picking a so
h

that the first term vanishes and by taking k = d

where

12 ]_d = " ' X 2
tn + 1)n(n - l)

n

[ 12 ]E (i n + 1)(n + 1)n(n - 1) 2 _bi (73)
i=l

^
if Idl < 27TS, otherwise k = SGN(d) 2wS where SGN(d) is the sign of d.

Consider those case with lal : 2_/S.

Then

1 1 r
k = • X -- U2q5

(crc)g 2 (crc)N

But

__2_I
(crc) _ U: [aB + kA + N]

: o

(74)

(62)
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and

U2rA = (crc) g (63)

T
A U 2

•".k = k + _N
(cTc) _

(75)

and the estimation error is

A

k - k
C T

C TC

N (76)

The estimate is unbiased:

A C T

E(k - k) = _E(N
C TC

= 0 (77)

and the variance is

0-2 = E(k- k) 2 = E
\cTc] \ cTc]

cT T C
E_'NN_

crc crc

cT E(NNT) C..._

C TC C TC

C TIC o- 2
0-2_ =

c rcc rc c rc

12

(n + 1)n(n - 1)
O-2 (78)
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For large n

or

12or2

n 3

V/_O-

O- k __'_--

n3/2

(79)

If _ = w/4, then for various values of n

Table III

3 2

4 5

5 10

6 17.5

7 28

8 42

cTc v_C °-h
(radians)

1.41

2.23

3.16

4.18

5.29

6.48

O. 557

0.353

0.249

O. 188

0.149

0.121

The remaining residual is

_(_) -- v[lal 2zrS]{[X2[ - In + 1)n(n - 1)]_12 27rS}2

+ Z (80)
i=3

Since phase detectors can normally read unambiguously only in a 2w

range, say

- w < ¢_ < 7T , (81)
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the set of data _ may have arisen from any of 3 n actual conditions where
!

the observed phase in q_i and the true phase is _i and

_i = _¢ (82a)

or

!

qb_ = _Pi + 2= (82b)

or

!

<P_ = q_i - 277 (82c)

Therefore R(_) should be computed for each possible _' and that data

set which minimizes R(_) should be used.

It is actually possible to divide the data space into regions and

to associate with each region a translation vector to give the _' which

yields a minimum R(_) and hence a maximum likelihood estimate of k. As

an example, division of the data space for the case of n = 3 is treated

below. In this case, using the above notation

Thus

", "2= : and., :
b/dJ L 1/_J L i/,_J

Thus the residual is

l o ¢-3

M = _ - -2 1

(83)

(84)

where

R = X_ + [iX 2 - [/277] 2u[Ix2l - v/_7r]

1

x: : -72 [- _ +_3 ]

(85)

(86a)
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1 _ 2_ 2 + _b3]x3 -- -_[_1
(86b)

Since the _'s are only measured within the interval -7 to 7, then

and

2_
Ixzl ! 733" (87b)

Given X 2 and X3, we must also consider

#X2 = x2 + (_3 - _11_ (88a)

where

!

X 3 = X 3 + (a 1 - 2a 2 + a3)C_2/3)TT

a i = -1, O, or 1

(88b)

(89)

Now we wish to divide the X

to a choices which minimize R.

2' X3 space into regions corresponding

Consider first the special region, I, where

- ¢_. < X: < ¢_ (90a)

1 1

- -_ 7r < --_6 7r (90b)

2
(91)

J - 3

For this region, any increment of v_w to X 2 or of (2v/_/3)w to X 3 can never

decrease R and hence when the data satisfies (90) no adjustment should

be made.
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Now we can cover the remainder of the data space (87) by translation

of subregions of Region I and hence, conversely, every possible data

point can be brought into Region I by the corresponding negative

translation. The resulting decomposition of the data space is shown in

Figure 22.

4

-I

-3

VIII (-I, I, I) VI (0, 1,0) X{I, I,-I)

VIII (-I,0,O) IV (0, 0,- I)

II(-l,O, I) I(o,o,o) III(I,0,-I)

IX (0,O,I) XIIl (i,o,o)

X(-I ,-I,I) XI(O,-I,O) XII(I,-I,-I)

-4 _ x2

-2 -I o i 2
TA-5574-39

FIG. 22 REGIONS IN THE X2-X 3 SPACE AND
THE a-SET THAT CARRIES THEM
INTO REGION I
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III ANALYSIS

This section is designed to analyze the results obtained under

the "work performed" section and to indicate avenues of future

investigations.

A. ANTENNA CONFIGURATIONS

1. GENERAL DISCUSSION

During the first half of the contract period, four specific antenna

configurations have been considered for use as retrodirective antennas.

Up to this time no serious consideration has been given to the effects

of vehicle spin on the spectral quality with any of these configurations.

On superficial consideration it appears that any configuration in which

there is appreciable mutual coupling between the receiver elemental

radiators will lead to a broadening of the spectrum received at each of

these radiators. This would not only make the operation of phase-locked

loops difficult but would, in general, degrade the quality of infor-

mation being transmitted. Two configurations that obviously have such

mutual coupling are the second and third types, which are discussed

further below; both of these employ line-source radiators, and all of

the amplifier/transmitters are active for all retrodirections. In the

cylindrical-geodesic-lens configuration the mutual coupling is predom-

inantly within the geodesic lens, while in the configuration using a

circular array of omniazimuthal elements the coupling is Obviously

between the radiating elements.

In the case of the cylindrical-geodesic-lens biconical-horn antenna,

previously analyzed, 1 spectral splitting is still present but, with the

assumptions made, an incoming single frequency signal would be split

into just two lines rather than a band of frequencies. It may well be

possible to obviate the detrimental effects of this simple splitting by

appropriate circuit design, whereas it presently appears unlikely that

this can be done where there is strong interelement coupling.
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In the fourth antenna configuration, that using discrete uni-

directional line source radiators each with a switchable amplifier/

transmitter, the detrimental effects of spectral splitting should be

considerably easier to overcome. This configuration also appears to

give an ERP as large as can be expected from any other configuration,

in relation to the total number of elemental transmitters and radiators.

For maximum ERP of the configuration considered the number of these

elements active at any one time is only about one third the total number;

if higher gain elemental radiators were used, this ratio of active

elements would be even lower.

A more detailed analysis of each of the three configurations dis-

cussed in the body of this report is given below.

No attempt has yet been made, for any of the antenna configurations

considered, to obtain an accurate prediction of gain, or ERP, that takes

into account the effects of mutual coupling. This naturally varies for

any two elements as a function of pointing angle. Even the approximate

gain values computed so far are not entirely satisfactory, since the

results are not always consistent when computed by different methods.

Although it has been shown _ that a higher value of ERP will be

obtained if the available RF power is distributed in an appropriate

weighted manner between the radiators, rather than equally, all the

computations discussed in this report assumed equal power distribution

between the (active) elements. Equal power distribution was assumed

because it is the only arrangement that is presently considered practical.

2. CYLINDRICAL-GEODESIC-LENS DISCRETE-LINE-SOURCE ANTENNA

The computed gain was found to be about 1 dB less than the postu-

lated maximum possible value, and this can be considered acceptable.

However the apparent amplitude modulation of ± 0.5 dB, as a function of

vehicle spin, could prove quite unacceptable.

The effect of using different transmitter and receiver frequencies

without some compensation is probably even more unacceptable but similar

results would be obtained with almost any other configuration in which

there is a few percent difference in the two frequencies.

It appears that the only significant parameter determining the ERP

of a practical retrodirective antenna is the total number of transmitters,
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and that other parameters such as the number of discrete line source

radiators and the geometrical arrangements within the cylindrical lens

are of relatively minor importance, with the general proviso--that the

simpler, the better.

The possibility exists that, by using an odd number of elemental

radiators, the modulation of EBP as a function of spin can be greatly

reduced. No attempt has yet been made to investigate this.

3. CIRCULAR ARRAY OF OMNIDIRECTIONAL ELEMENTS

Calculations have been carried out for a circular array of omni-

azimuthal elements, such as might be mounted at one end of a cylindrical

space probe. The data presented are the pattern shape and directivity

(gain) at the peak of the main beam for 30, 60, and 90 elements equally

spaced around a 20-wavelength diameter circle. Although existing

formulas were used in the calculations, the present work extends the

numerical results to the case of large array diameters and large numbers

of elements, which case is of interest in the application of retro-

directive arrays to space probes. The shape of the radiation pattern

was discussed in some detail as an aid in understanding why the direc-

tivity at the peak of the main beam is a function of the orientation of

the array elements with respect to the main-beam direction.

So far, the directlvity variation with array orientation has been

calculated for only two numbers of elements in 20-wavelength diameter

arrays. For 60 elements, the peak-to-peak variation of directivity was

0.25 dR; and for 61 elements, the variation was only 0.01 dB. These

examples, plus the discussion given in the body of the report, indicate

a preference for an odd number of elements. These figures apply for

stationary arrays, but presumably there would be comparable directivity

modulation as an array rotated on a spin-stabilized space probe. (These

calculations did not take into account any effects that spectral split-

ting due to rotation might have on the phase-conjugate circuitry, or any

phase errors introduced by differential Doppler shift across the array.)

Also, these calculations neglect the effects on the array pattern of

mutual coupling between array elements, as well as blocking of some

elements by other elements. The performance of this somewhat idealized

array can be used as a standard against which practical arrays can be

compared.
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The present calculations should be extended to include other numbers

of elements so that the number of elements required in order to keep the

directivity modulation below a given value can be established. Also, the

analysis should be extended as much as practical to account for mutual

coupling, blockage of some elements by others, and spinning of the array.

4. SWITCHED-ELEMENT RETRODIRECTIVE ARRAY

The primary difference between the switched-element retrodirective

array configuration and the three others that have been discussed is

that switching logic is required on the vehicle in order to realize the

maximum ERP. No attempt has yet been made to determine what added

circuitry this switching would require, but the theoretical value of ERP

when the appropriate switching is used appears to be very high. It

should be noted that this large value of ERP, within a fraction of a dB

of the postulated maximum value for any given total number of trans-

mitting elements, is obtained even though only a fraction of these

elements are used at any one time. It is, of course, necessary that

each of the transmitters have higher output than would be necessary to

obtain the same total radiated power if all the transmitting elements

were active simultaneously. This higher value of "installed transmitter

capacity", plus the switching circuitry, may be the price that has to be

paid for a retrodirective antenna system that does not suffer from the

spectral splitting effects of vehicle spin. This is because the antenna

can be made with relatively low mutual coupling between the receiver/

transmitter/radiator elements, leading in turn to a communication system

in which the effects of spectral splitting of the retransmitted signal

caused by spinning of the vehicle, is eliminated.

So far no attempt has been made to investigate the effects of

vehicle spin on modulation of the ERP. In fact the number of radiating

elements has only been assumed to be "large". Consideration of specific

finite numbers of radiators is likely to indicate modulation of ERP with

vehicle spin. The situation will be further complicated by the power

switching operation which could also produce modulation.

B. ENVIRONMENTAL EFFECTS

Planetary reflection, such as from the moon and Venus, should be

diffuse at retrodirective array frequencies greater than 1000 MHz. The
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power refleetivity at the planet for diffuse reflection should not

exceed 0.i. Variations in received power should not exceed 0.5 dB

except when an array subaperture receives only a planetary signal, or in

the unlikely event there is specular reflection from the planet. The

power received at subapertures from planetary reflection will be no more

than I0 percent below the power received from the direct signal (assuming

a power reflectivity of 0.I).

The planetary reflected signal and the direct signal will, in

general, be uncorrelated. A Doppler spread as large as hundreds of

thousands of c/s can be expected in the planetary reflected signal.

The operation of a retrodirective array in planetary entry environ-

ment should be studied further. A comparison between a simple two-

element retrodirective array and a single antenna on an entry capsule

would be appropriate.

The effect of noise upon retrodirective array operation and upon

the terminal receiving antenna operation should also be considered.
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IV PROGRAM FOR NEXT QUARTER

Analysis of the several antenna configurations will continue, partic-

ularly the effect of vehicle spin on the received and retransmitted signal

of a retrodirective antenna.

An attempt will be made to introduce the effect of mutual coupling

into the analysis for the configuration that uses an array of isotropic

radiators, and then to investigate the ramifications of this coupling on

system operation.

Study will be continued of the systems aspects of the overall com-

munication system, using some of the presently scheduled vehicles, such

as the Voyager, as a basic concept to which adaptive antenna techniques

might be applied.

The study of the concept of using adaptive antennas for direction

finding will be continued.

Study of the environmental problems will be at a somewhat lower

level than up to the present. The results will be reported in the Final

Report rather than in the next (third) Quarterly Progress Report.
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A PPEND IX A

EXTENSION OF GODDARD SYSTEM

TO EARTH/BUS/CAPSULE CONFIGURATION

This system is shown in Fig. A-1 and the corresponding spectra in

Fig. A-2. We define the frequencies of the following signals as:

feB

D u

fo

fzc

D c

fc

feb 1

feB 2

]CBe

fl

f2

f3

D O

Signal

Carrier (w/mod) from earth to bus

Doppler shift earth/bus path

Bus local oscillator 30

Carrier (w/mod) from bus to capsule 2491

Doppler shift bus/capsule path

Capsule local oscillator 89

Carrier (w/mod) capsule to bus 2402

Carrier capsule to bus 2403

Carrier bus to earth 1800

First subcarrier (w/mod)-bus to earth 1

Second subcarrier (w/mod)-bus to earth 2

Third subcarrier-bus to earth 3

D/80

Nominal Value

(MHz)

2399

The signals received at the earth station have frequencies:

(1) 60 fo + 3/4 D

(2) 60 fo + 3/4 Du + 80 fo - f,8 - Du

(3) 60 fo + 3/4 D + 83 fo - fes - D + 2 D c -

60 fo + 3/4 D + D c - 80 fo + 27 fc

fc
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°1
fl

L = LOWER SIDEBAND

U = UPPER SIDEBAND

RANGING TONES OR
PSEUDO-RANDOM CODE

fBc

o_-_
fcBI fcB2

ol
f2

ol
1
f3

f3
TB-5574 -41

FIG. A-2 SPECTRA OF SIGNALS IN TWO-TRANSPONDER SYSTEM
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Since feB is known at the receiver, signals (1) and (2) can be

processed in a double phase-locked receiver to evaluate f0 and D u (see

Fig. A-3). Then the remaining subcarriers C and d can be further

processed to evaluate fc and D c see Fig. A-4).
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APPENDIX B

CHANGE OF ORTHOGONAL BASES

Suppose we have an orthogonal basis in n-space and we have two non-

colinear vectors in that space. We wish to rotate our basis so that in

the new space the two axes define the plane containing the two given

vectors and, of course, the remaining axes are perpendicular to that plane.

We will require further that one of the new axes in the plane coincide

with first of the given vectors. The set of axes perpendicular to the

plane are, of course, not unique. However a particular set can be ob-

tained as follows:

Define Vii i = 1,2, ... n as the /-dimensional vector made up of

the first i components of the first of the given two vectors.

Define g2i i = 1,2,.... n as the /-dimensional vector made up of

the first i components of

t

where V2n is the second given vector and Vln is the unit vector in VI,

direction. If Vln and V' = '2n are already orthogonal, then V2n V2n.

Take Vln and V2n as the first two members of the new basis. The

third vector can have O's for 4,5 ... n components and hence can be taken

as the unique (within a multiplicative factor) vector orthogonal to VI3

and V23. Now we have (writing row vectors)

V13 V1 n - V13

V23 V2 n - V23

To find a fourth vector, with O's for its 5,6, ... n components, consider

1/43 and its fourth component, V_:
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V33 is orthogonal to all linear combinations of V13 and V23 and hence

if we take V43 = aV13 + /_V23 , V4n will be orthogonal to V3. Since V44

must also be orthogonal to Vln and V2 , we have
tl

4 ° 4
V43 El3 + V 4 V 1 = 0

v43 v23 ÷ v4 " v_ = 0

or

((_V13 + _V23) V13 -- .V44 V 4

or

÷ : -v I

(V13 V13)c_ + (V23 V13) _ = V44 V_

(V23 Vl3)(z + (V23 V23)/_ = -V_ V 4

But these allow a unique solution for a and /3 in terms of V44 which can be

taken as 1 for convenience and, hence, V44 is uniquely determined. Now

we have

V1 3

V23

V33

V43

V1 n - V14

V2n - V24

0

0

Suppose we have continued n similar fashion to obtain j vectors, then

we take the j + 1st vector as follows

Vj+I,.(aVlj + /SV2j), 1, 0 .... 0

Since no vector in the set of 3 to j has no nonzero component with index

greater than j and is orthogonal to all linear combinations of V1. and

V2n, Vj+l, " is orthogonal to all such vectors The proper a and /5 to

make Vj+ 1,,, orthogonal to V 1. and V 2. are the unique solution of
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(Vzj Vlj)a + (Vii V2j)/3 : _Vi +I

(Vi i V2j)a + (V2i v2j)_ = _V_*z

Consider, as an example, sixth-dimensional space with

V 1 = 1 1 1 1 1 1

V 2 = -5 -3 -1 1 3 5

Vi 2 V1 2 = 2 V1 2 V22 = -8

V22 V22 = 34 V13 = 1 V_ = -1

or

2a = 8/3 =- -t a = 6_

-8a + 34/3 = 1

a' = -13 /3' : -3

V 3 = 2 -4 2 0 0 0

3
V 3 = 1

#

V 3 = 2

V13 V13 -- 3 V13 V23 = -9

V23 V23 : 35 V_ -_ i V_ : i

or

11
3a - 9/3 = -1 a : - --

6

-ga +'35fi : -i
1

2

: -11 ' ' :: -3 V = 6

4 : i
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V14

V2 4

V4 = 4, -2, -8, 6, O, 0

V1 4 = 4 V1 4 V2 4 = -8

V24 -- 36 V_-- 1 V_ = 3

3
4a - 8_ -- -1 a -

4

-8a + 36/_ = -3 /3 -
1

4

or

t

a' = -3 /3' = -1 V_ = 4

V5 = 20-2-440

Vls Vls = 5 Vls V2s = -5

V2s V2s = 45 V_ ,= 1 V_ = 5

7
5a - 5y = 1 a = --

20

-5a + 45/3 = 5
3

20

= 1

or

I

a' -- 7 /3' = 3 V_ = 20

V6 = -8 -2 4 10 16 20

In summary (after reduction and making leading terms positive)

V 1 = 1 1 1 1 1 1

V2 = 5 3 1 -1 23 -5

V3 = 1 -2 1 0 0 0

V4 = 2 -1 -4 3 0 0

V5 = 1 0 -1 -2 2 0

V6 = 4 1 -2 -5 -8 -10
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